


ESTIMATION OF DYNAMIC CHARACTERISTICS

OF DEEP OCEAN TOWER STRUCTURES

by

ERIK H. VANMARCKE
RICHARD N. IASCONE

Report No. 72-12
Index No. 72-612 Coc



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge, Mass. 02139

SEA GRANT PROJECT OFFICE

Admini strati ve Statement

E. H. Vanmarcke and R. N. Iascone have extended the
original analysis methodology developed by Vanmarcke under
sponsorship of the National Science Foundation to an analy-
sis and demonstration of results based on offshore platform
response record obtained during the 1971 San Fernando earth-
quake. The authors present a significant improvement in
the means by which the total damping, both structural and
hydrodynamic, can be more accurately estimated for use by
the design engineer.

The M. I.T. Sea Grant Program, with the authors, has
organized the printing and distribution of this report and
the project established to disseminate important studies and
research results developed at M.I AT. under other than Sea
Grant support. Funds to do this came in part from a Henry
L. and Grace Doherty Charitable Foundation, Inc., grant to
M. I.T. Sea Grant, as well as from the National Sea Grant
Program grant number 2-35150, and from the Massachusetts
Institute of Technology.

Dr. Alfred H. Keil
Director

July 1972



AC KNOML E DG EVENTS

The authors are grateful to B. G. Burke and J. Tighe

of Standard Oil Company of California for making the Platform

Hope motion records available.

Thanks are also due to the N. I.T. Sea Grant Program for

the i'inancial support of this work.

Original work on the development of the methodology was

first presented at the Third Annual Offshore Technology Con-

ference, Houston, Texas, in April 1971 by the senior author,

who is a faculty member in the Department of Civil Engineering

at M. I.T. It was sponsored by the National Science Founda-

tion under Grant No. GK4151.

Particular thanks are also extended to Mrs. Nalinofsky

for the typing of this report.



TABLE OF CONTENTS

Part I

10

PART II

14

14
17

19

II.3
22

28

III.3 Rotational Motion

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

INTRODUCTION

ESTIMATION BASED ON SPECTRAL MOMENTS

I.l Spectral Moments and Related Spectral Parameters
Exampl e: Wave Spectrum

l.2 Estimation of Spectral Parameters. Advantages of
Spectral Moment-Based Estimation

RELATIONSHIP BETWEEN STRUCTURAL DYNAMIC PROPERTIES
AND RESPONSE SPECTRAL MOMENTS

Relative Displacement Response to White Noise of a
One-Degree Structure

a. Complete Moments
b. Partial Moments

II.2 Absolute Acceleration Response to White Noise Input
of a One-Degree Structure

Response of One-Degree Structures to Wave and
Earthquake Forces

Response of Multi-Degree-of-Freedom Structures

Proposed Estimation Procedure

PART I I I APPLICATION TO AN OFFSHORE TOWER

I I I .1 Pre 1 imi nary Spectral Analys i s

I I I. 2 Trans 1 ati onal Motion

CONCLUSIONS

APPENDIX A: DESCRIPTION OF PLATFORM AND INSTRUMENTATION
APPENDIX B: REFERENCES

Page

1

24

26

28

28

34

38

40

44



INTRODUCTION

Successful design of deep offshore structures critically de-
pends on the availability to the designer of an adequate descrip-
tion of the forces to which the structure is likely to be subjected,
and on his ability to model the structure for the purpose of evalu-
ating pertinent response measures. The motion of deep fixed off-
shore tower structures under the action of wind-induced ocean waves

or earthquakes results from the complex interaction of inertial and

drag forces  Horison, et al., 1950!. Nath and Harleman �967! found
that for structures built in deep water, the drag component in the
Morison wave force equation is negligible compared to the inertia

component, and they express the structural response as a linear func-

tion of the wave heights. Foster �967! and t1alhotra and Penzien

�969! use an equivalent linearization procedure to treat, in an
approximate way, system non-linearities due to drag forces and wave-
structure interaction. The linearized system is then analyzed using
the mode-super position procedure  Bi ggs, 1964; Gaither, 1964!. The
response at some critical point in the tower structure is represented
by the first few modes of vibration. The motion is often predominant1y
in the fundamental mode.

Each mode is characterized by its natural period and damping,
both very important factors in design. Yery little is known about
the d~am i~n of actual full-scale structures. In the case of offshore
towers, the total damping is made up of both structural and hydro-

dynamic components which depend importantly on the level of motion.

The designer is primarily interested in the value of dampi ng to be
used in dynamic response analyses for desi n level in uts. Specific-
ally, provided linear dynamic analysis procedures are used, the quan-
tity of most practical value is the total equivalent viscous damping
at desi gn level amplitudes . Natural frequencies can also change with
motion intensi ty, but estimates derived from small amplitude si nusoi-

dal or ambient vibration tests often provide sufficient information.



This report deals with the determination of structural dynamic

parameters from field measurements of, say, platform motion. It is

shown how actual response records can be used to estimate equivalent

modal periods and equivalent total damping values. The proposed pro-
cedure is based on recent results  Vanmarcke, 1971! which relate

periods and dampings to the moments and the "partial" moments of the

spectral density function of the structural response to wide-band

excitation. Simultaneous records of the exciting forces  generated

by ocean waves or by earthquake-induced motion of the ocean floor!

need not be available. For cases in which on1y the first mode is

activated, the proposed procedure calls for the computation of the

first three moments  i.e., area, first and second moment! of the esti-

mated response spectral densi ty function in a frequency band which

includes the fundamental frequency. The same method may also be used

to estimate properties of higher modes in multi -degree-of-freedom sys-

tems by successively isolating portions of the power spectrum which

contain higher mode peaks.

Other methods for determi nation of structural dynami c properties

by using response records have been suggested. Auto-correlation func-

tion techniques are discussed by Cherry and Brady �965!. For a white

noise excited simple oscillator, the damping is estimated from the

decay rate of the auto-correlation function. Spectral methods have

the advantage that the dynamic properties for different modes can be

obtained separately, simply by focusing attention on different portions

of the output spectral density function. A well-known "spectral"

method is to determine the damping ratio from the half-power bandwidth,

i.e., the absolute value of the difference between the frequencies at

whi ch the spectral densi ty i s equal to one-half times its maximum value .

When bandwidths are narrow, the accuracy of this measurement is often

not satisfactory. It is difficult to estimate single spectral ordinates

with high confidence, since the goals of high resolution and small sta-

tistical uncertainty are in basic conflict  Blackman and Tuckey, 1959;

Jenkins, 1961!.



PART

ESTIMATION BASED ON SPECTRAL MOMENTS

Records of wind velocity, wave height or earthquake accelera-

tion have the appearance of sample functions of random processes.

The displacements, stresses, etc. induced into structures by wind,

wave, or earthquake action are a'iso random processes. It is often

reasonable to assume that the intensity and the frequency content

of the fluctuating part of the motion at hand  excitation or response!
do not change predictably during the time interval of interest, and

that the mean value equals zero. In short, the motion can often be

viewed as a stationary random process  wi th zero mean, without loss

of genera1ity! and can be represented by  Rice, 1944!

n

X t! =   A. sin ~.t + p,!
i=1

where A. = the random amplitude, $. the random phase angle and
1

.th
u>. = the frequency of the i contributing sinusoid. Successive

1

values of 4, are mutually independent  in a statistical sense! and
1

uniformly distributed between 0 and 2it. Successive values of A. are
1

also mutually independent, do not depend on the phase angles, and

have mean zero and mean square  or variance! A.. The average total7
n

power, the mean square, or the variance of N t! is .Z A.. Assume

now that the frequencies ~. in Eq. 1 are chosen tr lie at equal inter-
1

vals A~. Fig. 1 shows a function G u ! whose value at w. is equal to
Y 1

A./ha>, i.e., G u>!A~ = A.. Allowing the number of sinusoids in the
i ' i

motion to become very large, the variance will become equal to the

area under the continuous function G ~! which is known as the  one-

sided! spectral density function. It expresses the relative impor-
tance, i.e., the relative contribution to the mean square of X t!,

of sinusoids with frequencies within some specified frequency band ~



G w!

i i+1

Fig. 1 Definition of the Spectral Density Function

G w! y Fig. 2 Noment-Based Spectral Parameters:
0' w2 and q = w /w

s 2



I.l SPECTRAL MOMENTS AND RE1 ATED SPECTRAL PARAMETERS

The moments oi' the spectral density function G ~! of a station-
ary random process are

G z!d~
1

0

�!

The related quantities

<; = �,/XO! ', i = 1, 2

have the dimension of circular frequency. Note that ~1 may be inter-
preted as the distance from the 'centroid" of the "spectral mass"
G ~! from the frequency origin. See Figure 2. An important unit-
less spectral parameter is  Vanmarcke, 1969, 1971!

l/2
q= l- � !

A0A2

From Schwarz' inequality, 0 < X /X A < 1, and hence, 0 < q < l. The
factor q depends only on the degree of dispersion of spread about
the central frequency. To see this, note that q can be expressed as
follows:

s

"2

where

�!4! = 412 - tel

The spectral parameters 10, <a2 and q all have a simple interpre-
tation in the time domain. The following relations are well known

Note that ~ may be interpreted as the "radius of gyration" of the
s

"spectral mass" G ~! about its "centroid." The factor q is a measure
of the variability in the frequency content of a random process. It
equals zero for a pure sinusoid and takes a value much smaller than
one for narrow-band processes.



2 X X

aX and aX denote the r.m.s, values of the random process X t! and its
time derivati ve X t!, respectively. The fi rst moment X and the spec-

tral parameter q are intimately related to the properties of the

~envelo e R t! of the random process X t!. When the envelope deftnl-
tion used is that due to Rice �944; or Cramer and Leadbetter �967!,

it may be shown that  Yanmarcke, 1972!

 9!q = 'R 'X

The factor q is equal to the ratio of the r.m.s. value c R of the slope
of the envelope R to the r.m.s. value oX of the slope of the process X.
This result is illustrated in Figure 3. When the process Ã t! is

Gaussian, then many other statistical properties which are often of

practical interest, e.g., average barrier crossing rates, mean clump

sizes, and maximum response statistics can be approximately expressed

in terms of X0, ~2 and q.  Yanmarcke, 1972!.

Exam le: Wave S ectrum

R -R mo/m!
G m! =   ! e

where

c  = 8.10 x 10 = g/Y  radians/sec!

0.74

g = acceleration of gravity
 ft/sec !

V = wind speed reported
by weather ships  ft/sec!

Based on records of wave heights during storms in the North

Atlantic, the following functional form was suggested by Pierson and

Moskowitz �963! for the spectral density function of the wave heights,
hi I h

2



Fig. 3 Sample Functions of X t! and R t!. Time Domain

Interpretation of Spectral Parameters
2Xo=cr, ~ =a'/a' and q =o/a'
x' 2 x x R x

GT ~!

Fig. 4 Estimated Spectral Density Function G  ~!
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The values of ~p ~ <2 and q are

4
a V

g

I/2~ p 5 1/2
0 /g ~ 0 l 77 ~8 �2!

1 /2
q = l- = 0.395

The value q = 0.395 is typical for spectra with moderate to large

bandwidths, Spectral density functions with narrow bandwidths, e.g.,

those of the response of a lightly damped one-degree-of-freedom sys-

tem to wide-band i nput, have q factors which are much closer to zero.

Spectra whose power lies predominantly in the very low frequency range

tend to have q factors close to one.

I.2 ESTIMATION OF SPECTRAL PARAMETERS. ADVANTAGES OF SPECTRAL MOMENT-

BASED ESTIMATION

m

k=1
�4!

The estimates GT <vk! can be obtained either from a Fourier transforma-
tion of the estimated autocorrelation function, or directly from the

squared norm of the Fourier transform of the digitized record x t!

The spectral moments and parameters just defined can also be com-

puted for the estimated spectral density GT ~! obtained from a recor-
ded trace x t! which can be regarded as a single sample function of the

stationary random process X t!. Assume that the record x t! is digi-
tized into a sequence of n observations at equidistant intervals At.

The estimated s ectral characteristics are denoted by A.. T, ~. andi,T' 1,T
qT, T being the length of the record. If the spectral density GT u>!
is evaluated at equidistant frequencies ~ = ~k, k = 1, 2, ... , m
 where the choice of the frequency interval depends on T!, then

 see Fig. 4!



 Blackman and Tuckey, 1959; Jenkins, 1961; Tuckey, 1967}. The total
number, m, of frequencies depends on the upper bound cut-off frequency

= m~, which can be determined from the length ht of the time in-
terval between points at which x t! is specified. ~ is the so-called

c
Nyquist frequency  Jenkins, 1961! which is defined by the relationship
2' = 2m/~ . It follows that m = m/At~,

C

lim A. A.
i,T i

Similarly, for other spectral parameters, e.g., q

~l T 1/2qT = limj 1 - ~] qT~ ~0 T~2,T �6!

It is important to note that the high and low frequency ends of the
estimated spectral density are unreliable due to finite record length,
digitization of the record  "aliasing"!, non-stationary effects, meas-
uring equipment limitation, etc.  Blackman and Tuckey, 1959; Crandall,
1963; Tuckey, 1967!. "Aliasing" is the effect whereby the part of the
spectrum corresponding to frequencies in excess of the Nyquist fre-
quency ~ are "folded" into the frequency range 0 < u> < ~ and added
to the spectral density i n this range .

Other errors in GT ~k! result from the fact that a basic conflict
exists between the goals of high resolution  i.e., small ~! and small
statistical uncertainty. The smaller the frequency interval h~, the
greater the length of the record required to obtain spectral density
measurements G  ~k ! of a gi ven reliability  Jenkins, 1961!.

Owing to statistical variation, the sample values of the spectral
parameters, e.g., A,. T, obtained from different records of length T,

s
would generally differ from each other and from the "true " value A.

1
itselt'M.hen the process is ercrodic, and the available record x t!
is sufficiently long, however, the difference between A. T and X. should

i,Y 1
become very small and it is expected that



For a given record length T, estimates of spectral moments may

be expected to be much more reliable than those of individual spec-

tral ordinates. This follows essentially from the fact that X

given by Eq. 14, is the sum of a large number of statistically inde-

pendent contributions ~k GT ~k!h~. This argument is formally devel-
oped in the next few paragraphs.

The mean and variance of the estimate, GT g!, of the individual
spectral ordinates are approximately given by  Jenkins, 1961!

ELGT ek -" G ek

Var[GT a !] = G  ak! �8!

The variance of G  ~�! is inversely proportional to the product of
the record length and the bandwidth. The fluctuation of G  <o ! may
be measured by its coefficient of variation or the ratio of the stan-

dard deviation to the mean value. Using Eqs. 17 and 18, one obtains

V [GT  k!] 2~ 1/2
�9!

m ~ m

~k G <k!~< = >.
k=1 k=1

�0!

rL~' T] ~ ~  ~~! ~ T ~k!] ~ k  ~kT k=1 k T k n k=1 k k

The ratio of the standard deviation to the mean value of X. T is
i,T

 Var[A,. T]!
  � �! L G  !d] /L G  !d] �2!

0 0

In Eq. 14, the contributions ~< GT ~k!~ to the estimated moment A. Ti,T
are statistically independent, and hence
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For example, when G ~! is constant in the frequency range 0 < z < 0,

then Eq. 22 becomes

1/2 l '+1  IT!
n ~jZ i =O,1,2 �3!

Furthermore, for reasons stated earlier in this section, partial
spectral moments, obtained by integrating GT u>! over a reasonably
wide frequency range which does not include the ver hi h and ver

low tre uenc ends, will often be even more reliable than co~elate
moments  i.e., for which integration is over all frequencies'.

Assuming that D»Aa, it is obvious that the coefficient of variation

of the estimated spectral moments will be considerably smaller than

that of the individual spectral ordinates.  Compare Eqs. 19 and 23!.
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PART I7,

RELATIONSHIP BETWEEN STRUCTURAL D' NAMIC PROPERTIES

AND RESPONSE SPECTRAL MOHENTS

It is quite straightforward to compute the spectral parameters

imp 4
 and q i' or any g i ven spectral dens i ty fun cti on . An i 1 1 ustra-
tion has already been given in Section I.l  Eqs. 10-13!. When the

steady-state motion of interest is the response of a linear dynamic

system to random input, then the moments of the response spectral

density function, Gl ~!, which is given by

Gl  ~! ! H u>! ] GO u!! �4!

will depend on the parameters of both the input spectral density
function GO w! and the system amplification function, ~H <u! ~. When
the input is an ideal white noise, however,  i.e., GO u>! = GD! then
the spectral parameters ~2 and q will depend on the system proper-
ties only. The case studied first is that of a viscously damped one-
degree-of-freedom osci 11ator excited by a force or by a motion at its

base. In Section II.l, the relative displacement response to white

noise is studied. Acceleration output spectral parameters are com-

puted in Section II.2. Wide band input spectra such as those char-

acterizing wave forces acting on structures or earthquake motions,
are discussed in Section II.3. Finally, in Section II.4, an exten-

sion of the ana1ysis to multi-degree-of-freedom systems is presented.

II.1 RELATIVE DISPLACEMENT RESPONSE TQ WHITE NOISE OF A ONE-DEGREE

STRUCTURE

The amplification function of a single-degree-of-freedom system

with base acceleration input and relative displacement output is

given by
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IH  !I' =
+ 4~

n n

�5!

where ~ is the natural frequency and g is the ratio of critical

damping. Taking G0 ~! = G0 in Eq. 24, and substituting Gl ~! for
G ~! in the expressions for Xl, u>2 and q  Eqs. 2, 3 and 4!, one
obtains:

mG0
0 4

�6!

�7!
2 n

2 1 -1q =I-~ I- � tan
1-g

and

= � � I:1 � 1.1~+ 0 ~ !j�4< 2 �e!

Note that q depends only on the damping ratio <. For small values

of damping,q can be approximated by2

2 - 4g
q 'Ir

�9!

A plot of the exact and approximate expressions for q is shown in2

Fig. 5.

~� =  X2/Z0!1/2 �0!

< =<q = � �-r/~~!2 7r 2

4 1 0 2
�1!

34~"n"O 3/2 2G0 " = A0 A2/A0! �-7 1/A0A2! �2!

When the damping is light, the system properties ~ and r. and
n

the excitation spectral density G0 can be expressed in terms of the
spectral moments by combining Eqs. 3, 4 and 26-29. The result is:



1.0

Spectral
Parameter0 8

q 0.6
0.4

0.2

Damping Ratio g

Fig. 5 The Factor q for the Response to Ideal White

Noise of a Viscously Damped Linear Oscillator

"a "n

Fig. 6 The Spectral Density Functions

Gl ~! and G2  !



The above expressions, with the moments X. substituted by the sample
1

moments X. estimated from a recorded trace, may be regarded as es-
i,T

timators of ~, g and G0.
n

b. Partial Moments

It is of' considerable practical interest to study the efi'ect

 on the spectral moments and moment-based parameters! of neglecting

the contributions due to components with frequencies outside a band

of frequencies  ~ , ~b! centered around the natural frequency ~ .a' b n
Tt 2" i1 1 i 1i d I»1 f

hypothetical spectral density function, G2 ~!, which is equal to
Gl ~! within a limited band of frequencies and is assumed to be zero
elsewhere. See Figure 6.

It is convenient to introduce the unitless band limits

"a
a

n

"n
Ab Q!b �3!

031 Q+3Q+3Qb...!+0 q!�4!0 4|; 2 3 1 3 3

1- � �+0 +n ... !+0 q!0 2g 2 2 2

4/hi a b
'"n

�5!

1 � �  n +-n +-a ... !+0 q! �6!0 40 2 3 1 3 3
2 4~Mn 5 b 3 b 3 a ' '

The parameters ~2 and q are2

which must lie between 0 and '1. Crandall and Mark �963! studied

the influence of 0 and 0b on the area under G2 u>!. Neglecting terms
a

of higher order in ~, and higher than third order in Q and Qb, the
a

moments of G2 u>!, or the partial moments of Gl  ~! become
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1- �  a -n + � a ->a!4q 1 3 1 3
2 n vr a b 3 a 3 b �7!

q = � 1-0 +Q -0 -Q +a -n2 4g 2 3 2 3
m a a a b b b �8!

Introducing the series

�+x! = 1 - x + x � x + ...-1 2 3
�9!

into Eq. 38, one finds

< = �.'T ~ o 'r.o2 4< 1 1

a
�0!

The above result should be compared with Eq. 29. The ratio of the

values of q corresponding to the spectra G2 ~! and Gl ~!, respectively,
is denoted by R , a reduction factor to be applied to the value of q

given by Eq. 29. Me have

1 1 1/2R = '~a+ r. a
a b

�1!

�2!ld2 = 0!

2 4g   a!
1+a

a

�3!

Note that the system properties u> and z can be again expressed as

simple functions of the spectral moments, now the partial, rather

than the complete moments.

For 2 and 0b ~0,
then the frequency

approaches zero in

is chosen, Eqs. 37

R ~ l. If both A and 0 are very close to one,
g a

band is very narrow; Eq. 41 indicates that R

that case. Note that, in the case when Q = Ab
and 40 become
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a!�"  X2/XO!l /2 �4!

1 + a
a 7r=  T =!g l - ! 1

- Q ADA 2 �5!

Having obtained ~ and t, one can then use Eq. 34 to estimate the
excitation spectral intensity GO. When g is small and 0 is not too

a

close to one, the following expression may be expected to be suf-

ficiently accurate.
2

1 + 0
G=  a}~  !0 -0 0 AO �6!

II.2 ABSOLUTE ACCELERATION RESPONSE TO MHITE NOISE INPUT OF A ONE-

DEGREE STRUCTURE

in which IH  = ~Hko!  is given by Eq. 25.2 2

�7!

The results just presented are valid when the input to the one-

degree system is a force and the output a displacement, or when the
input is a support acceleration and the output a relative displace-
ment. Relations between partial moments and structural parameters

can also be computed for various other combinations of input and output.

tn fact, absolute acceleration output is of most interest here, since
structural response is usually measured by an accelerometer. Fortun-

ately, for li htl dam ed s stems, Eqs. 41-45 can be shown to remain

approximately valid i' or all common one-degree system transfer functions

if the reduced frequency limits 0 and Ab are chosen sufficiently
a

close to one. For example, consider a one-degree-of-freedom system

excited by a support acceleration and whose response is an absolute
acceleration.  See Figure 7!. The modulus squared of the complex
frequency response H' z! is
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y=z-x

Equation: y+ 2Ca y+ ~ y = - z
2

n n

~In ut ~Out ut

H� L- ~2 ~2
 + 4~2~2~2!j-l
n n

 uP + 4< ~ u! u!

Fig. 7. Some 1-D.O.F. System Amplification Functions

id 4! 4l
a n b

Fig. 8. Typical Wave Force Spectrum GF <! and
Squared Amplification Function ~ H +!  2
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4 2 2X2 =  I! X2 + 4q  I! X4

>2 + 4~4 22 2 4 
n 2 n n2 0 m nL 3b

+4  +~  � -A!�+ � Q+2 64 ; 1 4t:
A a !r a I! n 2 �2!

Using Eqs. 40-52, it is easy to verify that for small values of  : and
for values of 0 larger than, say, 0.5, the acceleration and displace-

a

ment spectral moments are approximate'ly related as follows

I 4
= �!

i n i
�3!1=0,1,2

It follows that the approximate expressions for ~ and < derived ear-
n

lier in terms of the displacement  sartia1 spectral moments  Eqs. 44
I

and 45! remain val i d i f every X. i s subs ti tuted by X .. The new ex-
1 1

pression for GO becomes

1+n,
>n =  ! � n! >o  ~!  l - ~! �4!

It should be noted that the complete acceleration spectral moments
I IXl and A become infinitely large when the input is ideal white noise.

This can be seen by allowing 0 to become zero in Eqs. 51 and 52.
a

II.3 RESPONSE OF ONE-DEGREE STRUCTURES TO WAVE AND EARTHQUAKE FORCES

A cooit!only used expression for the spectral density function
of ocean wave heights  the wave spectrum! is given by Eq. 10.

42 -g u! /�!!
4 m! =  +! e  lo!

The meaning of the symbols has been given earlier. Nath and Harle-
man �967! found that for tower-like bottom-supported structures
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standing in deep water, wave forces on the cylindrical members can

be approximately linearly related to wave heights. Similarly, the
response  e.g., platform deflection! of a linear elastic structure
can be expressed as a linear function of the wave forces. If the

structure is modeled as an equivalent one-degree system with spring
constant K, natural frequency ~ and damping q, then the platform

n
deflection spectral density function is

4

d ! =K 2 F !n 1

! +4~>>
n n

X2 1/2.=�!
i A0 n �2!

2
4 1= I- � ! = �   '!

A0A.2 m 1 + 0 �3!

' G   ! dwhere

GJ 4!
a n

a Ql 4!b
n

When the band limits ~ and a> do not satisfy the above relation-
a

GF ~! is the wave force spectrum which is in turn related to G ~!
 Eq. 10!. The exact relationship depends on the structural config-
uration  Nath and karleman, 1967!. A typical force spectrum is
shown in Fig. 8. In the present context, the important point is
that the force spectrum has a wide-band character and is smoothly
varying compared to the structural amplification function for light
dampi ng values. The forcing spectrum parameter of prime interest
is GF ~ !, the value at the structure's natural frequency. The spec-n

tral parameters of Gd ~!, based on partial moments obtained by inte-
grating over i'requencies which lie within a relatively narrow band
centered around o>, will be the same as those given earlier  Eqs.

n
42 and 43!.
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ship, then the more general results, Eqs. 37 and 40, can be used.

The above approximate relations remain valid when the response is

the platform acceleration rather than the platform deflection, for

reasons explained in Section II.3.

Similar conclusions are reached when sea-based fixed struc-

tures are subjected to earthquake ground motion, or to the combined

action of wave and earthquake forces. Earthquake motions an firm

ground or on rock are characterized by wide-band spectra; even those

on sof't soi 1 tend to have spectra which vary sufficiently smoothly

for the results to hold, at least for structures with damping ratios

less than about 0.05.

I I.4 RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS

A similar procedure may also be used to estimate modal fre-

quencies and damping values in multi-degree-of-i'reedom systems by

successively isolating portions of the estimated spectral density

GT ~! which contain individual modal peaks. It will be assumed that
the spectral density GO  d! of the stationary random wave forces Z t!
is reasonably flat in the vicinity of each of the modal frequencies.

It is further assumed that the structural response X t! can be ex-

pressed i n terms of the normal modes C . and the modal coordinates
j

X. t!, j=l,2, ... n.
j

�6!

x. + 2z.<o.x + ~.x. =  I'./m.!z t!
j j J j 3 J J

�7!

The system transfer function H u>! may be expressed in terms of the

Each component X. t! represents the output of a single-degree-of-
j

freedom system, characterized by its modal frequency ~. and the modal

damping ratio t;., and excited by the modal forcing function I'.Z t!,
j

I'. being the participation factor of the j mode. The j decoupled

equation has the form
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transfer functions H.  <o! of the individual modes,
j

n 4.1'. n

H  o! = ! ~H.  u! =   c.H. u!!
j=l mj 3 j=l 3 3

�8!

where c. = C.V./m., and
J J J J'

H.  a!!�
td. - hl

J

�9!
1 Z .0! -UJ

J J

The response spectral density is

n n

G v! = GO a!!IK u>!l = GO v ~ ! c.ckK. a!!H* u!!0 j 1 k 1 g kg �0!

where K* ~! is the complex conjugate of Kk <o!. It has been shown
 Vanmarcke, 1971! that Eq. 60 can be rewritten as follows

2

G ro! = Go ~! g ]H. ru![ I c.c< A > - � - +I B.< �!!0 j I J kl 3k Jk �jk

When the above approximation is reasonably accurate, this

provides a straightforward way of computing the damping ratio of the

j mode. First, two frequency limits, ~ and <u, which isolate
.th

.th a

the j modal peak in the estimated response spectral density GT Mk!
are chosen. The major contribution to the estimated partial moments

where A.k and B.k are constants which depend on the frequency ratiojk jk
r = ~k/~. and on the damping ratios in modes j and k.

k j
For lightly damped systems whose modal f'requencies are well separated,

all cross-terms vanish and the i spectral moment X. is then approxi-.th
1

mately equal to the sum of the "pure" terms
"b

c. GO ~. ~ IH.  ~!   dw = g c.X.2 i 2 2

1 1 g 0 J J 1 J 1~J �2!
"a
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A. T will be that due to the j mode, i.e., c.K.. is roughly estima-,th . 2

i,T j 'I.J
ted by A. T. The frequency and damping estimation can then proceedi,T
as indicated below.

I I. 5 PROPOSED ESTIMATION PROCEDURE

To evaluate the equivalent natural frequency and the equivalent
damping ratio of a structure that can be modeled as a one-degree-of-
freedom system, the procedure requires the computation of the fi rst
three moments  i .e., area, first and second moment! of the estimated
spectrum  of the response! in a frequency band  ~ , ~b! which includesa'

the fundamental frequency ~ . Actually, the value of ~ is unknown,n' n
but can be estimated reliably for lightly damped structures. The first

I

estimate, ~, might be the frequency at which G  u>! is maximum  Seen' T I I
Fig. 9a!. It is convenient to choose ~ and ~b so that ~ /~ = ~ /~b.

/I a b a n n b'
A new estimate ~ can now be obtained from Eq. 44, and an estimate of

n II I
the damping from Eq. 45. If ~ and ~ are sufficiently close, no iter-

n n

ation will be required. Otherwise, new values will be needed for the

reduced band limits 0 and Qb, either by choosing a new frequency rangea b'

over which to integrate  while keeping 0 = Q !, or by taking 0tt >I a 1 b a

~ /w and Ab = ~ /u>b  in which case 0 p Ab , so that Eqs. 37 and 40a n b n b a
need to be used!.

The same method can in some cases be used to estimate the period
and damping of higher modes in multi-degree-of-freedom systems by suc-
cessively isolating portions of the response spectrum whi ch con'ain

higher mode peaks, as suggested in Fig. 9b. But to account properly
for the contribution, due ta adjacent modes to the various computed

partial moments, several cycles of iteration may be requi red.
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GT ~!

4! 4j

Fi g. 9a. Estimation of One-Degree-of-Freedom System Properties

fdb Ul I Idy
��!

n

Fig. 9b. Estimation of fill ti-Degree-of-Freedom System Properties
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PART III

APPLICATION TO AN OFFSHORE TONER

II I. 1 PRELIMINARY SPECTRAL ANALYSIS

This part is devoted to an analysis oi' the recorded response

of an offshore bottom-supported tower to the February 9, 1971, San

Fernando earthquake. The structure and its instrumentation are de-

scribedd in Appendix A, The response is in the form of a digitized

time history of' acceleration, measured at two poi nts on a platform

which is at the top of' the structure. One point is at the center of

mass of the platform and the other point is located at an edge of

the plati'orm. Preliminary analysis i ndicated that it is reasonable

to assume that the center of mass and the center of stiffness of the

platform are both located at the same point. The accelerations at

each point are measured along two orthogonal axes and are denoted by

u along the x-axis and v along the y-axis, The subscripts "A" and

"B" denote the two points on the platform, "A" being the edge point

and "B" the center point. The first step is to obtain an estimate

of the frequency content of each record, by computing the squared

norm of the Fourier Transform. Figures 10 to 13 are plots of these

spectra. They are characterized by a large spike at a frequency

which is close to the system's natural frequency, which is yet to be

determined' Also, since most of the response is concentrated around

a single frequency we can infer that the structure responds primarily

in just one mode oi' vi bration and can be modeled by an equivalent

single-degree-of-freedom system. An analysis aimed at isolating the

rotational component of motion is presented in Section III.3.

I I I. 2 TRANSLATIONAL MOTION

He focus attention here on the primary mode of vibration, pre-

sumably the first translational mode, which appears to have a natural

frequency of 3.75 rad/sec. Inspection of the spectra shown in Figs.

10 - 13 indicates that reduced band limits A = 0b = 0.8  i.e., initial



Fig. 10. Spectrum of Platform Center Notion in y-Direction  v>!

4.4x10

3.5xl0

2.7110

1.8xl0

8.8xlG

4.0

29

8.0 12.0 16.0 u! 20.0



30

G,  !
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Fig. 11, Spectrum of PIatform Center t1otion in x-Direction  u
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Fig. 12. Spectrum of Platform Edge Notion in y-Direction  ii !
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GT ~!
3.6xl0

2.9xl0

2.lxl0

1.4x10

7.lxl0

4.0 8.0 16.0 v 20.0]2.0

Fig. 13. Spectrum f' or Platform Edge Motion in x-Direction  uA!
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band limits are ~i = 0.8 x 3.75 and ~b = 3.75/0.8! might lead to
a

suitable damping estimates. From the computed partial moments, and

by iteration using Eqs. 44 and 45, the equivalent one-degree-of-

freedom system parameters ~ and |; are estimated tor the four re-
n

sponse components  two orthogonal accelerations at points "A" and
'8"!. The results of the calculations are summarized in Table l.

Q = 0.8
a

u>� rad/sec!
3.81

Point A

X-Dir.

Y-l3i r. 3.69 2.70

Point S

3.85

3.71

4.05X-Dir.

Y-Dir. 2.56

Table 1

z  C!
2.48

3.10

Point A

X-Dir.

Y-Dir.
1

~  radjsec!

3.84

3.70

Point 8

3.75X-Dir.

Y-Dir.

3.86

3.70 1.97

Table 2

To determine the sensitivity of these results to the choi ce of fre-

quency interval used to compute partial moments, two other values

of ~ were tried. Tables 2 and 3 show the results corresponding to
a

= 0.7 and 0 = 0.9, respectively. Summary statistics for the
a a

damping estimates are given in Table 4.
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Point A g  rad/sec!
n

X-Dir. 3.80

c ~!
1.51

2.56Y-Dir. 3.71

Point B

X-Di r. 3. 82 3 ' 14

3.73Y-Di r. 3 ~ 19

Table 3

point Uirec-, am in r.
tion Q = 07 8 = 08 0 = 09 Average Plinimuma ' a ' a

2.48 1.92 1.51 1 .511.97

2.793.10 2.70 2.56 2.56

8 4. 05

2.56

3.75 3.653.14 3.14

1.97 3.19 1.972.57

Table 4

II I .3 ROTATIONAL NOTION

The motion at the center of the pl atform  point "B"! is assumed

to be due to pure trans 1 ation, i .e., the pl atform twi sts about i ts

center . Any contribution due to twist to the total motion can be

i denti fi ed by i sol ating the rotational components at point "A" . It

i s assumed that the pl atform acts as a rigid di aphragm and that there

i s no in-plane distortion at the platform elevation. Therefore, any

di fference between the accelerations at points "A" and "B" is due

solely to p1atform rotation. Shown in Fig. 14 is a plan view of the

platform wi th an arbitrar ily imposed displ acement u, vB and 8, where
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Fi g. 14. P1atform Oeformation
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uB and vB are the displacements of the center and 0 is the rotation
of the platform. From the figure one can determine that

tan f + 0! =  tang + tan0! 1 � tang tan01
�4!

For small 0, tan0 = 0. Expanding Eq. 64 and neglecting terms of

second or higher order in 0, one obtains:

tan g + 0! = tang + 0� + tan g!2
�5!

and

+ v - v
x A B ~ l �6!
a "8 "8 a 1 + tan 8

We wish to work with the rotational acceleration 0. Differentiating

twice with respect to time:

1

1+ tan 8
�7!

Table 5

By inserting the known values of v, v', uA, and u and taking the
Fourier Transform resulting rotational motion record, one obtains the

plot shown in Fig. l5. Note that the maximum ordinate of the spec-

trum of the rotational accelerations is much smaller than any of the

maximum ordinates of the translational spectra. The estimated values

of the natural frequency and damping for rotational motion are shown

in Table 5 be!ow.
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0

0

Fig. 15. Spectrum of Platform Rotation
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CONCLUSIONS

A method has been presented for determining the equivalent
linear dynamic properties of bottom-supported ocean structures from
records of their response to random water waves or earthquakes. From
a Fourier decomposition of the vibrati on, an estimate of the spec-
tral density function can be determined. For a single-degree-of-
freedom system, the proposed procedure requires the computation of
the first three moments of the estimated response spectral density
in a frequency band which includes the fundamental frequency.

The method has been applied to the records of the motion of an

offshore platform during the February, 1971 San Fernando earthquake.
The damping values obtained might be used in the desi gn of similar
ocean towers to resist strong earthquakes. The rotational components

of motion appear to be relatively unimportant. Of course, the conclu-

sions cannot be generalized to different load conditions  e.g., ocean

waves only! or, for the same load condition, to very different re-
sponse amplitudes. Valuable information can be gathered, however,

by repeating the analysis whenever new motion records become avail-

able, and by comparing the frequency and damping estimates obtained.

The proposed damping estimation procedure has some distinct ad-

vantages over other methods, e.g., the half-power bandwidth method

 Tanaka et al, 1969!. Particularly notable features are:

 i! Low and high frequency portions of the estimated spectra,
which are unreliable due to time interval size, finite record length
and non-stationary effects, measuring equipment limitations, etc.,

can be eliminated.

 ii! The record length needed to obtain reasonably stable estim-
ates of partial spectral moments is relatively small.

 iii! Smoothing of the "raw" spectral estimates is unnecessary;
estimated spectral moments and parameters based upon them may be
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expected to change very little as a result of smoothing.

The method could also be used to estimate wave height spectral

density parameters. lt suffices to equate computed spectral param-

eters and thei r correspondi ng estimated values obtained from a

recorded trace.
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APPENDIX A

Descri tion of Platform and Instrumentation

The data used in the final part of the report was provided
by engineers at Standard Oil of California. It was recorded

during the February 9, 1971, San Fernando Yalley Earthquake on
Platform Hope, which is located off the coast of California near

Carpinteria. It is a development and production platform built

in 1965, The earthquake-wave instrumentation system was installed

in December, 1969. The platform has a capacity for 60 wells lo-

cated in three rows parallel to the west plane of the platform.

The locations of the accelerometer packages are shown in Figures
A.l,A.2, and A.3. The coordinates of the packages are shown in

Fig. A.3. Package C is located in a conductor pipe at the mudline,

while packages A and B are attached to the main deck support beams.

The data recorded at location C were not used in this report. The
positions of the sensors A and B were selected to indicate trans-

lational and torsional motion  Titlow, 1971!.
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Fig. A.l Platform Hope, West Elevation

 From Titlow, 197]!
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4, Well Pipes

Package A

rincipal

Axis

Fig. A.2 Platform Hope, Tower Plan View

 From Titlow, 1971!
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ck

Sensor Locations

Package x-Coor d. y-Coord. z-Coord.

+85 +184 -56

+28 +184

Fig. A.3 Platform Hope, North Elevation and

Sensor Coordinates

 From Titlow, 1971!
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